Conjugacy in Sn

How can you tell based on the cycle decomposition of an element of Sn which elements are in its conjugacy class?

Consider a cycle
$$\sigma = (a_1 \dots a_m)$$
, and $t \in S_m$.
Then what is $t \sigma t^{-1}$?

If $k \in \{1, ..., n\}$, then $t \sigma t^{-1}(t(k)) = t(\sigma(k))$. We have 2 cases:

Case 1: $k \neq a$; for any i (i.e. k doesn't appear in the cycle σ). Then $\forall \sigma \forall \tau^{-1} (\tau(k)) = \tau(k)$, so $\tau(k)$ doesn't appear in the cycle decomposition of $\tau \sigma \forall \tau^{-1}$.

$$(ase 2: k = a_i, then tot'(t(a_i)) = to(a_i) = t(a_{i+1})$$

That is, σ sends a_i to $a_{i+1} \iff t\sigma \varepsilon^{-1}$ sends $\varepsilon(a_i)$ to $\varepsilon(a_{i+1})$ so $\varepsilon \sigma \varepsilon^{-1} = (\varepsilon(a_i) \varepsilon(a_2) \dots \varepsilon(a_m)).$

This leads to the following theorem:

Theorem: If o & Sn has cycle decomposition

then $t \sigma t^{-1}$ has cycle decomp. $(t \langle a_n \rangle t (a_n)) \dots (\dots t (a_n))$

Pf:
$$L = L(a_1 \dots a_m) L^{-1} L(a_{m+1} \dots) L^{-1} L \dots L^{-1} L(\dots a_k) L^{-1}$$
,
so the cycle decomposition follows from above discussion.

Note that the cycles are disjoint since
$$L$$
 is a bijection:
 $a_i \neq a_j \iff L(a_i) \neq L(a_j)$. \Box

Thus, two elements of Sn can only be conjugate if their cycle decompositions have the same # of cycles of each length. In fact the converse holds!

Theorem:
$$\sigma_{=}(a_1 \dots a_{m_1})(a_{m_1+1} \dots a_{m_2}) \dots (\dots a_{m_k})$$
 is conjugate to
 $\sigma'_{=}(b_1 \dots b_{m_1})(b_{m_1+1} \dots b_{m_2}) \dots (\dots b_{m_k}).$

Pf: Let r be the bijection rending each a; to b; and every other element to itself. Then $r \sigma r^{-1} = \sigma$?

Ex: Sy has 5 conjugacy classes, w/ representatives
1,
$$(12)$$
, (123) , (1234) , $(12)(34)$, respectively.

More generally, The # of conjugacy classes in Sn is equal to the number of partitions of n:

- 3=2+1=1+1+1 ~> S3 has 3
- a 4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1 → Sy has 5
- $5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1 3 S_{5} has 7$